Uncertainty in spatial evacuation model

نویسندگان

  • Azhar Mohd Ibrahim
  • Ibrahim Venkat
  • Philippe De Wilde
چکیده

Pedestrian movements in crowd motion can be perceived in terms of agents who basically exhibit patient or impatient behavior. We model crowd motion subject to exit congestion under uncertainty conditions in a continuous space and compare the proposed model via simulations with the classical social force model. During a typical emergency evacuation scenario, agents might not be able to perceive with certainty the strategies of opponents (other agents) owing to the dynamic changes entailed by the neighborhood of opponents. In such uncertain scenarios, agents will try to update their strategy based on their own rules or their intrinsic behavior. We study risk seeking, risk averse and risk neutral behaviors of such agents via certain game theory notions. We found that risk averse agents tend to achieve faster evacuation time whenever the time delay in conflicts appears to be longer. The results of our simulations also comply with previous work and conform to the fact that evacuation time of agents becomes shorter once mutual cooperation among agents is achieved. Although the impatient strategy appears to be the rational strategy that might lead to faster evacuation times, our study scientifically shows that the more the agents are impatient, the slower is the egress time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conceptual Design of Spatio-Temporal Agent-Based Model for Volcanic Evacuation

The understanding of evacuation processes is important for improving the effectiveness of evacuation plans in the event of volcanic disasters. In terms of social processes, the enactment of evacuations in volcanic crises depends on the variability of individual/household responses. This variability of population response is related to the uncertainty and unpredictability of the hazard character...

متن کامل

A robust optimization model for distribution and evacuation in the disaster response phase

Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster per...

متن کامل

Reliability Analysis of Evacuation Routes Under Capacity Uncertainty of Road Links

In this paper, we present a reliability based evacuation route planning model that seeks to find the relationship between the clearance time, number of evacuation paths and congestion probability during evacuation. Most of the existing models for network evacuation assume deterministic capacity estimates for road links without taking into account the uncertainty in capacities induced by myriad ...

متن کامل

Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach

This paper considers evacuation via surface transportation networks in an uncertain environment. We focus on demand uncertainty which can lead to significant infeasibility cost during evacuation, where loss of life or property may appear. We develop a robust linear programming model based on a robust optimization approach where hard constraints are guaranteed within an appropriate uncertainty s...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017